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The study of brain-computer interfaces (BCIs) has undergone 30 years of intense development and has grown into a 
rich and diverse field. BCIs are technologies that enable direct communication between the human brain and external 
devices. Conventionally, wet electrodes have been employed to obtain unprecedented sensitivity to high-temporal-
resolution brain activity; recently, the growing availability of various sensors that can be used to detect high-quality 
brain signals in a wide range of clinical and everyday environments is being exploited. This development of 
biosensing neurotechnologies and the desire to implement them in real-world applications have led to the opportunity 
to develop augmented BCIs (ABCIs) in the upcoming decades. An ABCI is similar to a BCI in that it relies on 
biosensors that record signals from the brain in everyday environments; the signals are then processed in real time to 
monitor the behavior of the human. To use an ABCI as a mobile brain imaging technique for everyday, real-life 
applications, the sensors and the corresponding device must be lightweight and the equipment response time must be 
short. This study presents an overview of the wide range of biosensor approaches currently being applied to ABCIs, 
from their use in the laboratory to their application in clinical and everyday use. The basic principles of each 
technique are described along with examples of current applications of cutting-edge neuroscience research. In 
summary, we show that ABCI techniques continue to grow and evolve, incorporating new technologies and advances 
to address ever more complex and important neuroscience issues, with advancements that are envisioned to lead to a 
wide range of real-life applications.
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INV ITED
P A P E R

Biosensor Technologies for
Augmented Brain–Computer
Interfaces in the Next Decades
This paper focuses on recent and projected advances of a wide range of sensor and

acquisition neurotechnologies enabling online brain–signal processing in everyday,

real-life environments, and highlights current and future approaches to

address the challenges in this field.

By Lun-De Liao, Member IEEE, Chin-Teng Lin, Fellow IEEE,

Kaleb McDowell, Senior Member IEEE, Alma E. Wickenden, Member IEEE,

Klaus Gramann, Tzyy-Ping Jung, Senior Member IEEE, Li-Wei Ko, Member IEEE, and

Jyh-Yeong Chang, Member IEEE

ABSTRACT | The study of brain–computer interfaces (BCIs) has

undergone 30 years of intense development and has grown

into a rich and diverse field. BCIs are technologies that enable

direct communication between the human brain and external

devices. Conventionally, wet electrodes have been employed to

obtain unprecedented sensitivity to high-temporal-resolution

brain activity; recently, the growing availability of various sen-

sors that can be used to detect high-quality brain signals in a

wide range of clinical and everyday environments is being

exploited. This development of biosensing neurotechnologies

and the desire to implement them in real-world applications

have led to the opportunity to develop augmented BCIs (ABCIs)

in the upcoming decades. An ABCI is similar to a BCI in that it

relies on biosensors that record signals from the brain in

everyday environments; the signals are then processed in real

time to monitor the behavior of the human. To use an ABCI as a

mobile brain imaging technique for everyday, real-life applica-

tions, the sensors and the corresponding device must be light-

weight and the equipment response time must be short. This

study presents an overview of the wide range of biosensor

approaches currently being applied to ABCIs, from their use in

the laboratory to their application in clinical and everyday use.

The basic principles of each technique are described along with

examples of current applications of cutting-edge neuroscience

research. In summary, we show that ABCI techniques continue

to grow and evolve, incorporating new technologies and ad-

vances to address ever more complex and important neuro-

science issues, with advancements that are envisioned to lead

to a wide range of real-life applications.

KEYWORDS | Augmented brain–computer interface (ABCI);

biosensor; cognitive-state monitoring; electroencephalogram

(EEG); human brain imaging
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I . INTRODUCTION

As the proliferation of technology dramatically infiltrates

all aspects of social life, the development of strategies and

techniques to enhance human–computer interfaces is be-

coming increasingly important. Recent developments in

neurotechnologies are addressing these issues through

novel concepts that directly link brain activity to compu-

ters. Major forerunners in this area are brain–computer

interfaces (BCIs), which are based on a direct communi-

cation pathway between the human brain and an external

device and have been primarily applied in laboratory and

clinical settings. As biosensing technologies continue to

progress in the upcoming decades, the ability to image

brain activity will move away from traditional BCI settings

and into everyday environments. Such capabilities will

enable the development of potentially revolutionary ap-

proaches that will alter the nature of how people interact

with technology in their everyday environments through

novel augmented BCIs (ABCIs), which are BCIs that can

be used by individuals for everyday use.

Several existing imaging technologies are currently

used to sense brain activity for both basic research and

clinical applications, including functional magnetic reso-

nance imaging (fMRI) [1], positron emission tomography

(PET) [2], electroencephalograms (EEGs) and optical

brain imaging techniques (i.e., near-infrared spectroscopy

(NIRS) [3], laser speckle imaging [4], and functional

photo-acoustic imaging (fPAM) [5], [6]). fMRI offers mul-

tiparametric and noninvasive measurements of blood oxy-

genation [7], blood flow [8], and oxygen metabolism,

making this approach especially useful in imaging the

brain, muscles, the heart, and cancers as compared with

other medical imaging techniques, such as computed

tomography (CT) or X-rays [1], [9]. The PET imaging

technique is most useful in combination with anatomical

imaging methods, such as CT. Modern PET scanners are

now available with integrated high-end multidetector-row

CT scanners, which can perform sequential scans during

the same session [2]. These imaging techniques are pow-

erful tools for human brain imaging; however, the

machines used for these techniques are bulky and thus

difficult to use for measuring human brain activity in real-

life applications [3]. In contrast, the machines used for

optical brain-imaging techniques are relatively smaller and

are capable of assessing hemodynamic changes associated

with brain activity [5], [6]; however, the reconstructed

images from NIR suffer from poor spatial resolution due to

the diffusive nature of light in biological tissue [10]–[12]. A

magnetic or optically based system for measuring brain

activity in everyday applications remains to be discovered.

Of all the current imaging modalities, EEG offers the

most near-term potential for applications in everyday en-

vironments. EEG is a powerful technique that can provide

high temporal resolution to directly reflect the dynamics of

brain activity [13], [14] and has been widely used for both

medical diagnoses and neurobiological research [15]–[19].
EEG-based BCI techniques acquire, process, and then

translate signals from brain activity into machine codes or

commands to provide a direct communication pathway

between the brain and the external world [18], [20], [21].

The acquisition of brain activity by EEG-based BCIs can be

divided into two categories [21]: invasive [22], [23] and

noninvasive [24], [25]. Invasive BCIs use sensors inside

the human/animal brain to obtain high-quality brain-
activity signals or to send external signals into the brain

[22]. Invasive systems provide a reliable manner for con-

necting neurons and devices based on appropriate surgical

techniques; however, the relative increase in signal quality

as comparedwith scalp-based sensors has been disputed [26].

Furthermore, for everyday applications in healthy popula-

tions, any potential benefit based on increased signal

quality must be balanced against the potential risks asso-
ciated with both the surgery and the long-term implanta-

tion of these devices.

Noninvasive EEG-based BCIs, which measure the elec-

trical activity of the brain using electrodes placed along the

scalp skin, have been shown to provide a feasible method

for communication of the human brain with external

devices [27]–[29]. As compared with other mobile imaging

approaches, the usability and strong reliability of these
noninvasive devices, which are worn on the outside of the

head and are removable, have made the use of EEG signals

the most common approach for BCIs [30]. In recent years,

EEG sensors and sensing circuit designs have enabled the

integration of sensors into portable multimodal acquisition

devices to measure a wide variety of physiological signals.

Conventional wet Ag/AgCl electrodes are most frequently

used to measure EEG signals [19]. The characteristics of
conventional wet electrodes, including their applications

[31], have been widely studied and discussed in detail.

With proper skin preparation and the use of conductive

gels, the quality of the EEG signal measured by wet elec-

trodes is excellent. However, the use of wet electrodes,

which require an extended setup and preparation time and

are based on an electrolyte being applied to the user’s hair,

greatly limit the applicability of BCIs for everyday use.
Recent efforts in sensing technologies have shown prog-

ress in the development of dry sensors that have the po-

tential to dramatically improve system usability [32]–[34].

This progress coupled with advancements in signal pro-

cessing techniques is enabling mobile brain imaging and

novel BCIconcepts that will influence many aspects of

everyday life and a broad population of users. At the cur-

rent pace of research, the development of new EEG-based
ABCI devices with novel, highly usable, comfortable, ro-

bust and noninvasive sensors for everyday applications is

expected in the upcoming decades.

In this paper, we review a variety of biosensing

techniques and ABCI approaches that are based on the

associated devices. The basic principles of each technique

are summarized, and examples of their use in cognitive
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applications are also provided. Makeig et al. [35] and
Lance et al. [36] have conducted a thorough review of the

advances in signal processing and ABCI applications.

Developments in biosensors for ABCI applications are

described in Section II. Section III discusses the recent

development of a noninvasive biosensing device for human

brain imaging and an advanced device for mobile brain

imaging in everyday applications. Finally, in Section IV, we

briefly discuss the expected trends for ABCI applications in
the upcoming decades.

II . THE DEVELOPMENT OF BIOSENSING
TECHNIQUES FOR ABCI APPLICATIONS

A. Wet Sensors
Conventional wet electrodes are the most frequently

used sensors for measuring EEG signals. Many types of wet

electrodes are available, and their individual characteristics

and clinical applications have been widely studied and

discussed in detail [31], [37], [38]. The various types in-

clude the following: 1) disposable electrodes (pre-gelled

types); 2) reusable disc electrodes (gold, silver, stainless

steel or tin); 3) saline-based electrodes; and 4) needle

electrodes. For noninvasive multichannel measurements,
electrode caps are preferred, which are placed on the sur-

face of the user’s scalp. The most common wet electrodes

are coated with Ag–AgCl and have a diameter of 1 to 3 mm

with long, flexible leads that can be easily plugged into the

readout circuit device. Ag–AgCl electrodes can accurately

record small potential changes over relatively short dura-

tions [39]. In contrast, needle electrodes are preferred for

long recordings and are invasively inserted under the scalp.
The development of effective and comfortable EEG

sensors for everyday use requires the consideration of sev-

eral factors, including 1) the ability to acquire high-quality

signals from a wide range of individuals with different

head shapes and sizes, hair types and lengths, and scalp

properties (e.g., scalp toughening due to ultraviolet light

exposure of balding areas or different chemical or soap

residues associated with hygiene practices); 2) long-
duration inter-application sensor stability, sensor attach-

ment, and user comfort issues; 3) the effects of long-term

use (multiple acquisitions) on sensor stability/durability

and the head/scalp; and 4) other practical considerations

such as simplicity of application and cost. Additionally, the

type and design of the electrode can have a significant

impact on artifact signals (see [37] for a discussion on the

developments in signal processing and machine-learning
algorithms).

Novel Wet Approaches: Recently, Alba et al. explored the
benefits of a cross-linked polyacrylate gel at the electrode/

skin interface. As a superabsorbent hydrogel, polyacrylate

can absorb an electrolyte solution and swell to a degree far

beyond typical contemporary electrode materials, provid-

ing a strong hydrating effect to the skin surface [40]. This

hydrating power allows the material to increase the

effective skin contact surface area through wetting and

noninvasively decreasing or bypassing the highly resistive
barrier of the stratum corneum. Cross-linked sodium poly-

acrylate gel was synthesized using a method proposed by

Sohn et al. [41]. The dimension of the polyacrylate gel

electrode is illustrated in Fig. 1(a). The development of

water-based sensors for EEG-based BCI applications was

studied by Volosyak et al. [42] [see Fig. 1(b)]. This group

has shown that water-based sensors can measure EEG

activity using tap water as the interface to the scalp. How-
ever, movement artifacts, primarily influenced by the

shape of the electrode, remain one of the major problems

with such electrodes. This group has also concluded that

optimal designs of the electrode and the electrode mate-

rials for maintaining low impedance still require future

improvement.

B. Dry Biosensors
With proper skin preparation and the use of conductive

gels, the EEG signal quality from wet sensors is excellent
[19]. However, the skin preparation processes used to

reduce the skin-electrode contact interface impedance can

be time-consuming and uncomfortable for the user [43],

making them impractical for everyday use. Furthermore,

as the EEG signal quality may degrade over time as the skin

regenerates and/or the conductive gel dries [43], these

electrodes require repeated skin preparations and gel ap-

plications, which may also cause allergic reactions or in-
fections. Issues also arise when measuring a location of

interest that is covered with hair, which can lead to insuf-

ficient skin-electrode contact area, especially for long-term

applications.

To overcome these problems, dry-contact- and non-

contact-type EEG sensors have been developed to improve

EEG measurements [31], [44]–[46]. Dry contact sensors

Fig. 1. Several types of EEG sensors: (a) wet sensors; (b) water-based

EEG sensors proposed by Volosyak et al. [42]; (c)–(g) dry EEG sensors

developed by Yu et al. [46], Liao et al. [34], Matthews et al. [54],

Grozea et al. [56], and Liao et al. [33]; and (h) noncontact EEG sensors.
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can be separated into the following types: 1) dry micro-
electromechanical system (MEMS) sensors [see Fig. 1(c)];

2) dry fabric-based sensors [see Fig. 1(d)]; 3) hybrid dry

sensors [see Fig. 1(e)–(g)]. Dry MEMS EEG sensors use

Bmicroneedles[ to reach the skin to acquire the EEG sig-

nals without the use of conductive gels on the forehead or

at other hairless sites [45]. The characteristics of dry

MEMS EEG sensors have been discussed in detail [47],

including the dependency of the electrode-skin-electrode
impedance (ESEI) on electrode size [47]. However, de-

pending on their design, these sensors can be slightly inva-

sive as the electrodes (microneedles) penetrate the stratum

corneum and sometimes live skin layers, possibly resulting
in pain or infection. These dry MEMS sensors can perform

well in measuring EEG signals when applied to the

forehead or other hairless sites; however, evidence

regarding the quality of the EEG signals at sites covered

with hair using dry MEMS-based EEG sensors is less

convincing.

Recently, fabric-based sensors were proposed for mea-

suring biopotential signals [48]–[52]. Beckmann et al. have
conducted detailed investigations of the characterization

of fabric materials with different fabric specifications for

electrocardiography (ECG) measurements [51]. Baek et al.

Fig. 2. (a) Photograph of a participant wearing a 256-channel EEG cap with motion capture emitters placed on the cap and along standard

positions in a full-body motion capture suit; the same participant seen from behind wearing a backpack containing the EEG amplifier system.

(b) Spontaneous EEG activity recorded for selected channels (as indicated on the figure’s head to the right), showing single-channel

activity during several stride cycles and (below) vertical center-of-mass displacement during the gait cycle. The gait cycle begins and ends

with the left toe raised (red vertical lines). The other vertical lines indicate the timing of the left heel strike (black vertical lines), the right toe lift

(blue vertical lines), and the right heel strike (green vertical lines). (c) Centroids of independent component (IC) clusters (colored spheres)

visualized in the Montreal Neurological Institute brain volume in horizontal, sagittal, and coronal views. The gray and yellow spheres represent

eye and neck muscle activity clusters, respectively. The spheres of other colors mark the centroids of brain IC clusters. (d) Grand-mean

event-related potential (ERP) envelopes (maximum and minimum channel ERP values for each latency) time-locked to target stimulus onset

for two different movement conditions. The light gray shaded area shows the summed back-projection of all IC clusters. The purple shaded area

shows the back-projected contribution of the IC clusterwith equivalent dipoles in or near the anterior cingulate cortex [19 in (d)]. The yellow and

dark gray traces show the back-projected contribution of a representative neck muscle cluster [16 in (d)] and a representative eye movement

cluster [6 in (d)], respectively.
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fabricated a polydimethylsiloxane (PDMS)-based dry elec-

trode for long-term ECG measurements [50]. Both studies

indicate that long-term biopotential signal monitoring is

possible using fabric-based electrodes [48]. The test results

also indicate that the performance of fabric-based electro-

des is comparable to that of commercial Ag/AgCl electrodes

for ECG applications. More recently, Lin et al. developed
foam-based sensors wrapped in conductive fabric materials

to acquire forehead EEG signals [34] [see Fig. 1(d)]. They

also showed that the foam-based sensors have the potential

to reduce motion artifacts when obtaining measurements

from a freely moving user using conventional wet

electrodes. Compared with dry MEMS-based EEG sensors,

fabric-based sensors are relatively comfortable and nonin-

vasive. However, fabric-based sensors for acquiring EEG
signals at sites covered with hair require further improve-

ment because the contact area of the skin-electrode

interface is significantly reduced by the presence of hair.

In addition to the previously described types of dry

sensors, Matthews et al. proposed a hybrid dry sensor for

EEG measurements [53]–[55] [see Fig. 1(e)]. This sensor,

which combines high-impedance resistive and capacitive

characteristics, contacts the scalp surface without any skin
preparation and is dependent on the high contact impe-

dance between the scalp and the electrode. However, these

sensors possess hard substrates, which led to discomfort or

even pain on the scalp surface when force was applied for

attachment. The hard substrate also led to EEG signal dis-

tortions caused by motion effects [31]. Moreover, the

fabrication cost for a high contact impedance electrode

may be higher than for other types of dry EEG electrodes,
such as fabric-based electrodes. In response to this con-

cern, Cristian et al. presented a new, low-cost dry EEG

sensor made of flexible metal-coated polymer bristles [56]

[see Fig. 1(f)]. They suggested that the dry bristle sensors

produce high-quality EEG recordings and are thus suitable

for a wide range of EEG studies and BCI applications.

Moreover, Liao et al. proposed a novel dry spring-loaded

contact probe EEG sensor for measuring EEG signals, es-
pecially at sites covered with hair [33] [see Fig. 1(g)]. Each

of the spring-loaded probes is used to attach the sensors

tightly to the scalp surface. These probes were designed to

be inserted into a thin plate for additional conductivity.

Most importantly, this thin plate is flexible so that it will fit

the scalp surface well when applying force to the sensor.

The spring-loaded probes and thin plate serve as a buffer to

avoid causing pain when force is applied to the sensor and
to improve the skin-electrode contact impedance. An in-

jection molding process is used to package the sensors,

which can decrease the fabrication cost of the entire

acquisition system, depending on the cost of the electro-

des. Test results have demonstrated the feasibility of using

dry spring-loaded probe electrodes for measuring EEG

signals at sites covered with hair.

Noncontact (capacitive) sensors with spaces between
the electrode and the body and without skin preparation

also have the potential to acquire EEG signals [57] [see

Fig. 1(h)]. However, dry capacitive sensors are sensitive to

motion artifacts [31], and Gert et al. indicated that design-

ing an amplifier to acquire signals with such high source

impedance remains a challenging issue [31]. Because of

these issues, dry capacitive sensors require further

improvement.

C. Nano- and Microtechnology Sensors
Nanoelectronic device technology holds promise for

the next generation of electronics, leading to advancement

through the development of novel sensors, flexible, trans-

parent, and wearable high-performance electronics, smart

bandages, optoelectronics, on-chip electronic-optical cou-

pling, radiation hard electronics, and communications and
processing electronics for deployable sensor platforms. For

example, researchers in Spain and the United Kingdom

have developed a new method for measuring electrical

activity in the brain that uses sensors constructed from

carbon nanotubes (CNTs) [58]. Ruffini et al. also demon-

strated the use of carbon-nanotube-based dry sensors in

biopotential signal studies [44], [58]. In the future, active,

short-range communication of information between body-
worn sensors may be enabled by spin-torque nano-

oscillators (STNOs). These devices are being actively

studied as a technology for magnetic memory applications,

and may also be used as miniature frequency-agile radio

frequency (RF) sources and sensitive magnetic field detec-

tors [59]. For example, the extremely low-power (250 pW)

transmission of microwave radiation through air has been

demonstrated from a discrete 50-nm device, with broad-
band frequency agility over at least four octaves of fre-

quency without conjugate matching [60], enabling a new

class of low-power wireless communications for wearable

sensor technologies. Bio-inspired nanotechnologies mim-

icking gecko foot structures are being developed as

engineered reversible adhesive devices to enable mm- to

cm-scale robotic platforms to crawl on surfaces [61] and

Fig. 3. Wearable EEG devices: (a) Emotiv, (b) NeuroSky, (c) Zeo,

(d) StarLab, (e) EmSense, (f) nia Game Controller, (g) Mindo 4 with

dry foam electrodes, and (h) Mindo 16 with dry spring-loaded

probe sensors.
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may be applicable to future biocompatible dry electrode
adhesives for EEG sensors. Maturing micro- and nano-

electromechanical system (MEMS/NEMS) technologies

also hold promise for novel actuation devices, tactors and

state-measurement devices. In the future, carbon-based or

other biocompatible nanoscale sensing technologies may

be envisioned that could be injected into blood vessels,

cross the blood-brain barrier, attach to specific neurons or

cells, sense the desired signals and transmit to an external
receiver though the intact skull. While a very high spatial-

temporal resolution of the EEG signals could potentially be

provided in this manner, the resolution of many significant

technical and ethical considerations will be required to

facilitate the use of such technologies, similar to the exist-

ing drug-development protocols.

D. Multimodality Sensors
In addition to those sensors that are only used to

measure EEG signals, the simultaneous recording of hemo-

dynamic responses using NIRS and neural activity using

EEG through multimodality sensors while users receive

stimulation is also a critical issue in the neuroscience do-

main. NIRS and EEG techniques are based upon different

imaging principles, and therefore, cross-validation can

improve our understanding of both the relationship be-
tween hemodynamic responses and neural activity under-

lying cortical activation and the biophysics behind the

measurement techniques themselves. Furthermore and

critical to ABCIs, simultaneous NIRS and EEG imaging can

provide novel insight into the phenomenon of neurovas-

cular coupling changes for studying human brain mapping

in everyday environments. Takeuchi et al. developed a

head cap for both NIRS and EEG whole-brain imaging
[62], and neurohemodynamic changes have been ad-

dressed in detail. Cooper et al. also proposed a novel probe
design for simultaneous EEG and NIRS imaging of cortical

activation in the human brain [63]. To accomplish this

imaging, an Bopto-electrode probe[ was designed to house

both an EEG electrode and an optical fiber bundle. This

probe illustrates the potential applications of simultaneous

NIR and EEG imaging. Although such novel ABCIs could
provide simultaneous EEG and NIRS imaging, conductive

gels and proper skin preparation are still required on the

scalp skin surface at the electrode sites. In the future, we

envision that dry EEG sensors will be integrated into

simultaneous EEG and NIRS imaging.

III . INTEGRATION OF BIOSENSORS AND
SENSING DEVICES INTO ABCI SYSTEMS

A. Current Developments in Biosensing
Device Technology

Basic System Design: Traditionally, EEG systems have

used relatively bulky, wired laboratory or clinically

oriented equipment to measure EEG signals. Analog EEG
signals are directly transmitted to a sensing device through

wires that limit the routine activity of users. Recently,

small wearable EEG acquisition devices have become

available that are capable of recording EEG signals without

hindering the user in the performance of routine tasks in

everyday operational environments (for a detailed over-

view of wearable EEG-based BCI technology, refer to [64],

[65]). Wearable EEG systems have been developed using
headbands [66]–[68], headphones [69], caps [70], helmets

[55], headsets [71], [72] and even cat ears [73]. Their shape

determines the potential positions of the electrodes, which

limits their functionality; however, the design of wearable

EEG devices must consider both functionality and

appearance. For example, a forehead-based system would

not effectively utilize evoked potentials from the visual

cortex, which are typically measured from electrodes
located on the posterior portion of the head.

Analog Front-End: An instrumentation amplifier is used

to augment the small signals received from electrodes and

requires careful design to achieve a high signal-to-noise

ratio (SNR). The common-mode rejection ratio (CMRR) is

usually used to evaluate amplifier instruments, i.e., an

amplifier with a higher CMRR reduces the common-mode
noise in measurements. The traditional implementation of

amplifiers uses a three op-amp configuration, which re-

quires precise matching of the resistors used in the feed-

back network to achieve a high CMRR. Such matching

usually requires expensive laser-trimmed resistors that

consume a significant amount of chip area. One technique

for overcoming this problem is to use current feedback

instrumentation amplifiers [74]–[76], which requires two
resistors to adjust the gain, but the resistors are not re-

quired to be matched. The advantage of a current feedback

instrumentation amplifier is that it could be implemented

using CMOS techniques and could reduce the chip area

due to a lower resistor count, which is critical for amplifier

miniaturization.

During the acquisition of EEG signals, which contain

low frequencies, flicker noise (1/f noise) and input-
referred dc offsets are undesirable signals that must be

suppressed to achieve a high SNR. Flicker noises are

signals in which the spectrum is inversely proportional to

the noise. Input-referred dc offsets are caused by electrode

polarization. Depending on the electrode placement, these

dc offsets can be large and can easily saturate high-gain

instrumentation amplifiers. Chopper amplifiers are com-

monly used for reducing the noise associated with op-amp
imperfections and input-referred dc offset voltage. This

modulation transposes the signal to the odd harmonic

frequencies of the chopper frequency. After modulation,

the signals are amplified and demodulated back to the

original frequency band. The input offset voltage and noise

are demodulated to the higher harmonics of the chopper

frequency in the second multiplier. Another technique for
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reducing input-referred dc offsets is autozeroing. Auto-

zeroing amplifiers typically operate in one of two phases:

the sampling phase or the output phase. Autozeroing can

meet low-offset requirements but may not be suitable for
low-power applications [77] because it requires the offset

to be stored on a capacitor that may be relatively large and

may thus increase power consumption. This issue should

be resolved before it is used in EEG-monitoring appli-

cations. In [78], the authors apply autozeroing to an

instrument amplifier and use a low-pass filter for noise-

cancelling feedback.

Transmission Medium: EEG acquisition devices are

usually designed for low-power consumption and low

cost. The acquired signals are transmitted to another device

with a high-end processor through a transmission medium.

Currently, most projects use conventional wireless tech-

nology such as Bluetooth [66]–[68], 802.15.4/Zigbees [70],

or RF transmitters [55], [69], [71], [72]. Bluetooth was

developed as a replacement for cables and is a common
feature in laptops and cellular phones. However, it also has

a heavy protocol stack and high power consumption. In

contrast, the protocol stacks of RF transmitters and 820.15.4/

Zigbees are light and more efficient in terms of their

power use, but they are less common in laptops.

Multichannel EEG transmission should have a high

data rate and high power consumption. Compression tech-

nology can be used to reduce the data rate. Lossless com-
pression schemes are reliable but have lower compression

ratios [79], [80]. Lossy compression schemes [81], [82]

have high compression ratios but introduce artifact issues.

Table 1 summarizes the EEG acquisition devices men-

tioned above [55], [66]–[71], which are responsible for

wirelessly acquiring EEG signals and transmission data.

Signal processing requires high computation power and is
handled by hosts such as computers and cellular phones.

Therefore, acquisition devices could be implemented with

low-cost microcontrollers. Microcontrollers acquire digi-

tized EEG signals from an ADC through a serial interface.

According to the Nyquist-Shannon sampling theorem, the

sampling rate should be greater than twice the maximum

frequency of the acquired EEG signals. For example,

SSVEP signals with a maximum frequency of 50 Hz are
acquired, using a sampling rate of 128 Hz. A higher sam-

pling rate and a higher resolution provide better accuracy

for EEG signals but also increase the data rate and power

consumption.

B. Technologies That Will Change Future
Biosensing Techniques for ABCIs

Miniaturization of Power Sources: The miniaturization of

power sources will enable the development of lightweight,

portable sensor technologies. Li-ion battery technology, in

which the energy density is proportional to the voltage of
the cell, is being advanced through the development of

high-voltage cathodes and electrolytes capable of operating

at those higher voltages. Researchers at the U.S. Army

Research Laboratory (ARL) have developed breakthrough

electrolytes that allow for the operation of high-voltage

lithium-nickel-manganese spinel oxides at 4.7 V against

Li with 99% Coulombic efficiency and 85% capacity

Table 1 Comparison of Wireless BCI Systems
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retention after 200 cycles [83]. ARL researchers have also
developed a stabilized 4.8-V lithium-cobalt-phosphate

high-voltage cathode. Such a stabilized cathode can be

cycled against Li with only 12% capacity loss compared

with 33% capacity loss for the same cathode without stabi-

lization after 10 cycles. This increased capacity retention

has not been previously achieved [84]. Power sources

using energetic materials based on nuclear isomers are

being investigated for future power generation. Radio-
isotopes possess intrinsic energy storage that is more than

100 times greater than that of fuel cells and batteries, and

they have the potential ability to release that energy upon

demand. Recent results have demonstrated an induced

energy release from isomers using neutrons [85], and

alpha-based isotope batteries are being studied as a long-

lived power source with an anticipated 50-year lifetime

[86], which exceeds current battery lifetimes. Power con-
version systems are being investigated at the cubic-

millimeter, milligram scale to create high-efficiency,

high-power-density actuation systems. CMOS design tech-

niques, such as specific guard-rings and floating wells, that

enable on-chip handling of more than 20 V in a 130-nm

1.2-V CMOS process have been demonstrated [85] and

represent a significant step towards the high voltages re-

quired for novel actuators. MEMS-based ultraminiature
air-core inductors with high-quality (Q) factors ðQ > 20Þ
and inductance densities ð> 100 nanohenries/mm2Þ have
been shown to outperform most inductors fabricated with

thin magnetic films, forming the basis for high-efficiency,

high-frequency (> 20 MHz) boost converters [88]. Novel

techniques using capillary wicking are being used to shape

magnetic or high-k dielectric nanoparticles into complex

3-D microstructures [89], resulting in power conversion
device components that show significant improvements in

capacitance or inductance with no parasitic effect on the

quality factor (i.e., efficiency) up to 200 MHz. Nano-

electronic devices are also being explored, including super-

capacitors for energy storage [90] and graphene-based

metal-insulator-metal (MIM) diode structures for harvest-

ing energy and rectifying antenna structures.

The design of power-efficient control theory is another
approach to achieving reduced power requirements for

sensor array information processing. Bio-inspired and bio-

plausible control theory, in which the control laws could,

in principle, be implemented on the neural substrate of

simple insects, is being investigated for applications in

which computational power is extremely limited. Research

groups, such as Richard Murray’s group at Caltech, are

developing control theories that focus on tight coupling
between the temporal dynamics of the system and the

temporal properties of the control algorithm [91]. These

bioplausible algorithms use approaches that involve

parallel, asynchronous information processing and emerg-

ing circuit technologies, such as those being developed in

the DARPA-sponsored SyNAPSE (Systems of Neuromor-

phic Adaptive Plastic Scalable Electronics) project. These

technologies could, for example, facilitate the fusion of
inputs from different sensor modes that have distinctly

different time constants, such as EEG and fMRI, enhanc-

ing localization of the brain response for improved BCI

interactions.

Mobile Human Brain Imaging for Real-Life Applications:
Traditional neuroscientific approaches to measuring and

imaging the hemodynamics coupled to neural activity that
accompany cognitive processing (e.g., fMRI, PET) permit

only minimal movement of the participants’ hands or feet.

This restriction of the participants’ movement range is

necessary to avoid movement of the signal-generating

volume, i.e., the participants’ brain, which cannot be fol-

lowed by the heavy sensor arrays [92]. In addition, brain

imaging techniques that directly measure electrical activity

originating from the neural populations underlying cogni-
tive processing further restrict the movement of the

participants’ head and eyes to avoid contamination of the

signal of interest with current source activity originating

from the neck, supracranial, and facial muscles as well as

strong current source activity stemming from horizontal

and vertical eye movement. From the standpoint of em-

bodied cognition, however, cognitive processes are tightly

coupled to physical activity and make use of our physical
structure to reach behavioral goals [92], [93].

Consequently, results from traditional imaging ap-

proaches can only explain the neural basis of cognitive

processes that are restricted to specific recording environ-

ments and do not necessarily reflect natural cognitive

processing. Thus far, no investigation has compared hu-

man brain dynamics during free movement in the world

with the brain dynamics of restricted behavior during
traditional laboratory experiments. New results from ani-

mals in motion, however, demonstrate a direct coupling of

behavioral states with brain states [94], [95]. These studies

support the assumption that changes in behavioral states

are accompanied by changes in brain dynamic states to

adapt to differences in incoming sensory information.

While the restrictions of traditional brain imaging ap-

proaches do not invalidate theoretical views formed on the
basis of such experiments, several recent investigations in

human participants point to a tight coupling of motor

behavior and, for example, attention and spatial cognition.

An example of such coupling was described by Wykotska

and colleagues [96], demonstrating a direct influence of

(planned) movement on target detection when targets

were defined by features relevant to the movement. The

authors showed that shape-defined targets were detected
faster when participants planned to grasp a target object

while luminance-defined targets were detected faster

when participants planned on pointing towards the target

object. An even more pronounced coupling of active be-

havior with human brain dynamics could be expected for

spatial cognitive processes that are tightly coupled to and

make efficient use of idiothetic information derived from
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the vestibular and proprioceptive system [97]. Spatial up-
dating of one’s own position and orientation is a prere-

quisite of successful spatial orientation but relies heavily

on idiothetic information that is absent in traditional brain

imaging approaches. As a consequence, the brain dynamics

accompanying active spatial orientation including physical

rotation will provide novel insights into the brain dynamics

associated with idiothetic information processing and will

thus help us better understand the brain dynamics asso-
ciated with spatial orientation. To overcome the restric-

tions of traditional imaging approaches and to investigate

the brain dynamics accompanying active behavior in hu-

mans, our group, recently developed and demonstrated a

mobile brain/body imaging (MoBI) approach [91],

[98]–[100]. Through various experiments, we demonstrat-

ed the feasibility of this concept and revealed interesting

insights into the cognitive dynamics of attention during
treadmill walking [98] and into the coupling of cortical

activity with gait-cycle phases [100]. However, these

experiments were clearly restricted because of the hard-

wiring of the EEG system. In [99], the analysis of human

brain dynamics for subjects who were standing and walking

at different speeds was demonstrated. However, the cable

sway associated with the displacement of the participants’

heads while running required extensive template-based
artifact rejection (see Fig. 2). In another experiment

[Gramann et al., unpublished manuscript], the use of

traditional hard-wired EEG sensors restricted the movement

range of the participants’ heads when they attempted to

actively orient towards laterally placed objects in their

environment. In general, in the field of motor control and

physical behavior, numerous attempts to study active

cognitive processing have been hampered due to these types
of issues associated with the tethered nature of standard EEG

equipment. Classic examples include EEG studies of shooting

that have been largely limited to static targets as opposed to

reactive, dynamic targets; studies of golf that have been

largely limited to putting as opposed to driving and studies of

basketball that have been limited to free-throw shooting as

opposed to any other aspect of game-play. These examples

demonstrate the need for wireless sensor systems to allow for
future investigation and deeper insights into the architecture

of active and mobile cognition.

Advanced Flexible Electronics and Display Technologies:
Future ABCIs are envisioned to be moving towards seam-

less integration with users’ clothing and the environment;

advancements in technologies such as flexible electronics

and displays, which are maturing to provide lightweight,
rugged, and ultralow-power flexible imaging systems for

high-yield manufacturing processes, will enable such im-

provements [see, for example, http://flexdisplay.asu.edu/].

Full-color organic light-emitting-diode (OLED) displays

have been demonstrated on plastic substrates, and charge-

transfer complex molecular OLED systems have been

integrated into emissive flexible displays to dramatically

enhance the charge injection and transport properties of
organic devices [100]. Flexible reflective displays for

system-level integration have transitioned in industry to

meet emerging information technology needs for the

mobile soldier. Large-area distributions of flexible electro-

nic circuits, discrete elements, and sensors are being in-

tegrated with flexible solar cells, antennas, and solid-state

lighting to enhance next-generation displays. Enhance-

ments in carrier transport, brightness, and speed are being
investigated with the use of flexible and stretchable silicon

or metal technologies [102]. These technologies will enable

the creation of high-performance conformable circuits that

are needed for more seamless integration of ABCIs into

clothing as well as advanced concepts for smart clothes and

body armor. Stretchable silicon-integrated circuits that can

be applied directly to the skin have recently been demon-

strated [103]. These tattoo-like structures are an example of
the new epidermal electronics technology that can be used

to directly measure vital signs. Such advancements will

permit a range of advancements from novel approaches to

sensor design to the collection and integration of high-

density signals across numerous behavioral and physiolog-

ical sources for enhanced ABCI performance.

IV. TRENDS IN ABCIs

A. Current Applications of ABCIs
Wet electrodes have their own readout circuit sys-

tems and are reliable for clinical applications. For dry/

noncontact electrodes, developing the proper readout de-

vice for everyday use is important. Devices with dry elec-

trodes are more convenient and comfortable than
traditional EEG systems with wet electrodes [31] and are,

thus, more practical for use in everyday applications.

Although dry/noncontact EEG devices have not been pro-

posed or used for clinical applications, many commercial

devices use EEG measurements for entertainment (Neu-

rosky, Emotiv, StarLab, EmSense, and nia Game Control-

ler) [104], [105] and for monitoring personal sleeping

status (MyZeo) [106], as shown in Fig. 3(a)–(f). These
figures demonstrate that the development of portable EEG

devices with dry electrodes has become an important goal

for mobile human brain imaging.

Recently, Lin et al. proposed a wearable, wireless EEG

device (Mindo) for everyday use [32]. The Mindo 4 EEG

device with 4-channel foam electrodes has proven to be

reliable for controlling games according to the user’s mental

focusing state based on signals from forehead sensor sites
[34], as shown in Fig. 3(g). It also has the potential to acquire

the EEG status during sleep. Another multichannel EEG

device, Mindo 16, which has spring-loaded probe electrodes,

was designed by Lin et al. for wirelessly measuring EEG

signals, especially at sites with hair, as the corresponding dry

sensors have the potential to properly reach the scalp skin

through the hair [see Fig. 3(h)]. In addition to wireless EEG

Liao et al. : Biosensor Technologies for Augmented BCIs in the Next Decades

Vol. 100, May 13th, 2012 | Proceedings of the IEEE 1561



devices with dry contact electrodes, Gert et al. designed a
wireless device with non-contact electrodes for measuring

both EEG and ECG [107]. There is no doubt that developing a

truly wearable, wireless EEG device using dry/noncontact

electrodes and extending the limitations of this technique

from basic research to clinical applications are important

goals. Highly desirable characteristics of future devices

include a minimized readout circuit size and easy prepara-

tion when using dry electrodes.

B. Future ABCI Applications Based on Advanced
Biosensing Technology

Gaming control, homecare, and rehabilitation engi-

neering applications are potential future applications of

ABCIs in the coming decades. ABCI applications for gam-

ing are one of the major focuses of this technology, and

existing prototypes demonstrate the feasibility of games
controlled by an ABCI [40]–[42]. It is possible that an EEG-

based BCI device with novel EEG sensors that is capable of

interpreting the cognitive relevance of neuron interactions

in the brain will become available and reliable in the near

future [108]. Another feasible future trend for ABCIs is

remote monitoring, which can be used in homecare and

rehabilitation engineering applications [109]. The elderly

and ill often prefer living in their own houses to being in a
hospital, but living alone can be dangerous because of

unpredictable accidents such as falling and epileptic

seizures [110]. Remote-sensing and monitoring would

enable the remote monitoring of a user’s EEG signals.

EEG-based ABCIs may be able to assist with depression and

many other psychological and cranial nerve diseases, such

as schizophrenia, Parkinson’s disease and seizures, in the

near future. We refer the reader to another paper written
by Lance et al. [36] for details of future ABCI applications.

V. SUMMARY

We have studied a wide range of approaches to ABCIs and

explored their applications to neuroscientific questions

and cognitive engineering. We have provided insights into

the fundamental basis of many ABCI techniques and

highlighted important considerations for their practical

implementation. The miniaturization of sensors, elec-

tronics, and power sources; the design of power-efficient
information processing; and the emergence of flexible

electronics and display technologies have the potential to

radically enhance future ABCI capabilities. We hope that

these details will help those who are interested in using or

developing biosensing techniques for ABCIs to understand

the key aspects that should be considered when acquiring

measurements or analyzing data.

We have surveyed the large body of literature that
discusses studies in which biosensing technologies and

devices have been successfully used for ground-breaking

and important research on ABCIs and their applications.

The development of ABCIs is a rapidly expanding field that

is continually evolving to embrace new technologies and

real-life applications. h
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